Local Binary Pattern based Resolution Variation Video-based Face Recognition

نویسندگان

  • SHAILAJA ARJUN PATIL
  • P. J. DEORE
چکیده

Video-based face recognition is a very challenging problem as there is a variation in resolution, illumination, pose, facial expressions and occlusion. In this paper, we have presented an approach for resolution variation video-based face recognition system using the combination of local binary pattern (LBP), principal component analysis (PCA) and feed forward neural network (FFNN). We used, standard as well as created database. The main purpose of this paper is to evaluate the performance of the system. To the best of our knowledge this is the first work addressing the issue of resolution variation for video-based face recognition with this approach. We have experimented with three different video face databases (Created database, NRC_IIT & HONDA/UCSD) and compared with benchmark methods. Experimental results show that our system achieves better performance than other video-based face recognition algorithms on challenging resolution variation video face databases and thus advancing the state-of-the-art. Key-Words: Video-based face recognition, Local Binary Pattern, Principal Component Analysis, Feed forward Neural Network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Modelling of Eyeball with Pan/Tilt Mechanism and Intelligent Face Recognition Using Local Binary Pattern Operator

This paper describes the vision system for a humanoid robot, which includes the mechanism that controls eyeball orientation and blinking process. Along with the mechanism designed, the orientation of the camera, integrated with controlling servomotors. This vision system is a bio-mimic, which is  designed to match the size of human eye. This prototype runs face recognition and identifies, match...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Effects of pose and image resolution on automatic face recognition

The popularity of face recognition systems have increased due to their use in widespread applications. Driven by the enormous number of potential application domains, several algorithms have been proposed for face recognition. Face pose and image resolutions are among the two important factors that influence the performance of face recognition algorithms. In this study, the authors present a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017